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ABSTRACT 
       The deformation and transport of elastic capsule, the 
simplest model of red blood cell, in fluid flow inside a channel 
is of significant research interest because of the various 
applications in the areas of biomicrofluidics and biomedical 
engineering. Being a fluid-structure interaction problem, 
developing a computational model for the study of capsule 
interaction with fluid flow is quite challenging. The present 
paper discuss a two-dimensional computational model 
developed using immersed boundary method to investigate the 
transport and deformation dynamics of an elastic capsule in a 
channel flow under different Reynolds numbers and initial 
capsule locations.  The capsule is modeled using immersed 
boundary points forming a network of elastic links which can 
undergo tension/compression and bending.  The fluid flow is 
modeled using continuity and Navier-Stokes equations with 
finite volume method based discretization on a staggered grid 
system. We compute Taylor deformation parameter to assess 
the significance of Reynolds number and initial location of the 
capsule for the deformation behavior.  Simulations are 
performed for two different Reynolds numbers and three 
different initial locations. The final shape and position of the 
capsule are well captured using the developed model.  
Keywords: Elastic capsule; Finite volume method; Immersed 
boundary method, Reynolds number, Taylor deformation 
parameter 
 
INTRODUCTION 
      Elastic capsule can be used as a simple model to study red 
blood cell deformation and transport in the field of biomedical 
engineering. The problem of elastic capsule deformation and 
transport under pressure driven flow in a channel involves 
fluid-structure interaction. Hence, it has lots of research 
potential both from the fundamental research and industrial 
applications point of view. Numerous experimental, theoretical 
and computational studies have been done in the area of 
capsule transport and deformation in various conditions of 
channel flow. For artificial capsules flowing through a 
microfluidic channel the classical slug shape has been widely 
noticed in experimental studies [1, 2]. The axisymmetric 
parachute-like shapes for the red blood cell is observed under 
channel flow due to the influence of fluid dynamic forces, 
elasticity of the capsule membrane and boundary configuration 
[3]. Barthes-Biesel employed asymptotic expansions to study 

the deformation behaviour of a spherical capsule in simple 
shear flow [4].  Secomb et al. [5] through lubrication theory 
studied the flow in a narrow cylindrical channel with a capsule 
undergoing steady axisymmetric deformation. Ramanujan and 
Pozrikidis [6] developed three-dimensional boundary element 
method based model and analysed the effects of fluid viscosity 
on capsule deformation under shear flow. Using boundary 
element method Diaz et al. [7] observed the shape changes and 
transport dynamics of a capsule. Secomb et al. [8] suggested a 
new finite element based computational model for a red blood 
cell by adding a set of interconnected viscoelastic elements to 
model the membrane. Sui et al. [9] investigated the effect of 
capsule membrane bending stiffness in the dynamics of 
capsule under shear flow. The effects of elasticity, initial 
capsule shape, and initial capsule position for a capsule motion 
in a channel were analysed by Ma et al. [10]. Shin et al. [11] 
studied the inertial migration of an elastic capsule in a channel 
flow using feedback forcing based immersed boundary 
method.  Song et al. [12] discussed the transient behaviour of 
a circular capsule in three viscous shear flows for different 
Reynolds number and capillary number. Motivated by 
previous works, we present a simple two-dimensional 
numerical model to simulate the dynamics of an elastic capsule 
in a channel flow using immersed boundary method.  The 
model is simple because we assume the capsule as neutrally 
buoyant and the density ratio of fluid inside and outside 
capsule is equal to 1.0. To the best of our knowledge, an 
immersed boundary finite volume method based 
computational model addressing the present problem of elastic 
capsule deformation has not been reported till now. We 
investigate the dynamic behaviour of capsule under different 
Reynolds number and initial locations by capturing the shape 
and final position of the capsule and computing Taylor 
deformation parameter. 
 
MATHEMATICAL MODELING AND NUMERICAL 
PROCEDURE Figure 1 shows the physical problem of elastic capsule 
immersed in a fluid flow in a channel.  We use circle as the 
initial shape of the capsule and the initial location is at (xo, yo) 
in a channel with dimensions L x H, where L is the length of 
the channel and His height of the channel. The present work 
use IB method proposed by Peskin [13].We use Navier-Stokes 
and continuity equations in its dimensionless form with usual 
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notations which are as follows 

FIGURE 1: SCHEMATIC REPRESENTATION OF ELASTIC 
CAPSULE IMMERSED IN A FLUID FLOW IN A CHANNEL                                                                        

The Eulerian force density f  in eqn. (1) is given by 
fሺx, ሻݐ =  Fሺݏ, ൫xߜ  ሻݐ െ Xሺݏ,     (3)              ݏ݀ ሻ൯ݐ
         where F is the Lagrangian force density acting on the 

capsule and ߜ൫x െ Xሺݏ,  ሻ൯ is the two-dimensional Dirac deltaݐ
function. Refer to our previous works to see the detailed step-
by-step procedure to compute the Lagrangian force density F 
[14,15].   

 
The governing equations (1) and (2) are solved using 

fractional step method with the help of finite volume 
discretization on a staggered Cartesian grid system [Refer to 
[14,15] for more details]. The fluid velocity obtained after 
solving equations (1) and (2) are then applied to determine 
Lagrangian velocity with the help of Dirac delta function as 
shown below 

Uሺݏ, ሻݐ =  uሺx, ሻݐ ൫xߜ  െ Xሺݏ,      ሻ൯ ݀x                             (4)ݐ
 The obtained Lagrangian velocity is used to find the new 

position  Xାଵ of  an IB point say X  in the following form 
Xାଵ = X  ,ݏUሺ ݐ∆  ሻ                           (5)ݐ

where  ∆ݐ  is the time step-size.  
  
RESULTS AND DISCUSSION         A FORTRAN code is built to simulate deformation 
behavior of elastic capsule in a channel flow. We consider 
dimensionless channel size of 16 x 2. The initial diameter of 
capsule is taken as 0.4.  A parabolic velocity profile is assumed 
at the inlet of the channel. Capsule deformation is measured by 
the Taylor deformation parameter defined as ܦ௫௬ =
ሺಲିಳሻ
ሺಲାಳሻ  where ܮ and ܮ are, respectively, the maximum 
and minimum diameters passing through the center of the 
elongated capsule. It is used as a relevant parameter for the 
quantitative assessment of capsule deformation in a fluid flow.      

 
 
 
 
 
 
 

 

 
 

 
FIGURE 2: SHAPE AND POSITION OF ELASTIC CAPSULE 
FOR TWO DIFFERENT REYNOLDS NUMBERS AT 
DIMENSIONLESS TIME T=15.0 AT INITIAL LOCATION ݔ =1.0, ݕ = 1.0 

 
FIGURE 3: PLOT OF TAYLOR DEFORMATION PARAMETER 
WITH RESPECT TO DIMENSIONLESS TIME FOR TWO 
DIFFERENT REYNOLDS NUMBERS AT   ݔ = 1.0, ݕ = 1.0. 
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FIGURE 5: PLOT OF TAYLOR DEFORMATION PARAMETER 
WITH RESPECT TO DIMENSIONLESS TIME FOR TWO 
DIFFERENT REYNOLDS NUMBER AT ݔ = 1.0, ݕ = 0.95 

Further, we carried out simulations for the cases of off 
center capsules for Re=10 and 40. In the first case the capsule 
is placed atݔ = 1.0, ݕ = 0.95. Figure 4 shows the final shape 
and position of the capsule and figure 5 shows the variation of 
Taylor deformation parameter with simulation time. From 
figure 4 it can be observed that the capsule undergoes large 
deformation compared with the case of center line capsule for 
both Reynolds numbers. From figure 5, we computed the 
values of Taylor deformation parameter for Re=10 as 0.134 
and for Re=40 as 0.118. Hence, it is further verified 
quantitatively that off center capsule undergoes large 
deformation compared to center line capsule depicted in the 
previous case. 

 

 
 

FIGURE 6: SHAPE AND POSITION OF ELASTIC CAPSULE 
FOR TWO DIFFERENT REYNOLDS NUMBERS AT 
DIMENSIONLESS TIME T=15.0 AT INITIAL LOCATION ݔ =1.0, ݕ = 0.25 

 
FIGURE 7: PLOT OF TAYLOR DEFORMATION PARAMETER 
WITH RESPECT TO DIMENSIONLESS TIME FOR TWO 
DIFFERENT REYNOLDS NUMBER AT ݔ = 1.0, ݕ = 0.25 

Finally, we performed simulations for the case of capsule 
location  ݔ = 1.0, ݕ = 0.25. Here, the capsule is close to the 
bottom of the channel wall and far away from the center. Figure 
6 shows the final shape and position of the capsule under this 
conditions for Re=10 and 40. It can be observed that the 
capsule undergoes extensive deformation for both Re values 
compared to previous cases. Also, the capsule tends to migrate 
towards the center of the channel. This migration behavior is 
fast in the case of Re=40 compared to Re =10. Figure 7 
illustrates the variation of Taylor deformation parameter with 

Re =10 

Re =10 

Re =10 

Re =10 
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time and the values are computed to be 0.510 for Re=10 and 
0.422 for Re=40. A higher value of deformation parameter 
justifies large deformation behavior of the capsule when it is 
placed far away from the center of the channel. 
 
 CONCLUSION       The present work investigates the role of Reynolds 
number and initial capsule location for the case of elastic 
capsule transport and deformation in a channel flow. 
Accordingly, we construct a two-dimensional numerical model 
using immersed boundary method to carry out the simulations 
and the dynamic behavior is assessed with the help of Taylor 
deformation parameter.  Through our developed model, we 
found that the transport and deformation dynamics of elastic 
capsule in a channel flow strongly depends on Reynolds 
number and initial location of the capsule. Center line capsule 
deform to a greater extend for low values of Reynolds number. 
In the case of off center capsule, placing the capsule far away 
from the channel walls will result in the migration of capsule 
towards the center of the channel and also capsule undergoes 
severe deformation compared to the case of center line capsule. 
We believe that the developed immersed boundary model can 
be easily employed to investigate the dynamics of Red Blood 
Cell (RBC) under low Reynolds number flow conditions by 
modeling RBC as an elastic capsule with exact physiological 
data. 
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